A Nonholonomic Moser Theorem and Optimal Mass Transport
نویسنده
چکیده
We prove the following nonholonomic version of the classical Moser theorem: given a bracket-generating distribution on a connected compact manifold (possibly with boundary), two volume forms of equal total volume can be isotoped by the flow of a vector field tangent to this distribution. We describe formal solutions of the corresponding nonholonomic mass transport problem and present the Hamiltonian framework for both the Otto calculus and its nonholonomic counterpart as infinite-dimensional Hamiltonian reductions on diffeomorphism groups. Finally, we define a nonholonomic analog of the Wasserstein (or, Kantorovich) metric on the space of densities and prove that the subriemannian heat equation defines a gradient flow on the nonholonomic Wasserstein space with the potential given by the Boltzmann relative entropy functional.
منابع مشابه
A Nonholonomic Moser Theorem and Optimal Transport
We prove the following nonholonomic version of the classical Moser theorem: given a bracket-generating distribution on a connected compact manifold (possibly with boundary), two volume forms of equal total volume can be isotoped by the flow of a vector field tangent to this distribution. We describe formal solutions of the corresponding nonholonomic mass transport problem and present the Hamilt...
متن کاملAnalysis of the Brachistochronic Motion of a Variable Mass Nonholonomic Mechanical System
The paper considers the brachistochronic motion of a variable mass nonholonomic mechanical system [3] in a horizontal plane, between two specified positions. Variable mass particles are interconnected by a lightweight mechanism of the ‘pitchfork’ type. The law of the time-rate of mass variation of the particles, as well as relative velocities of the expelled particles, as a function of time, ar...
متن کاملOptimal transport over nonlinear systems via infinitesimal generators on graphs
We present a set-oriented graph-based framework for continuous-time optimal transport over nonlinear dynamical systems. Our approach allows us to recover provably optimal control laws for steering a given initial distribution in phase space to a final distribution in prescribed finite time for the case of nonlinear control-affine systems. The action of the controlled vector fields is approximat...
متن کاملA Generalization of Chaplygin’s Reducibility Theorem
In this paper we study Chaplygin’s Reducibility Theorem and extend its applicability to nonholonomic systems with symmetry described by the Hamilton-Poincaré-d’Alembert equations in arbitrary degrees of freedom. As special cases we extract the extension of the Theorem to nonholonomic Chaplygin systems with nonabelian symmetry groups as well as Euler-Poincaré-Suslov systems in arbitrary degrees ...
متن کاملمسیریابی حرکت روباتهای ماشینواره با روش پیشروی سریع
The Robot Motion Planning (RMP) problem deals with finding a collision-free start-to-goal path for a robot navigating among workspace obstacles. Such a problem is also encountered in path planning of intelligent vehicles and Automatic Guided Vehicles (AGVs). In terms of kinematic constraints, the RMP problem can be categorized into two groups of Holonomic and Nonholonomic problems. In the first...
متن کامل